
270 

Acta Cryst. (1987). A43, 270-283 

Surface Spherical Harmonics and Intensity and Strain Pole Figures of 
Cubic Textured Materials 

BY C. M. BRAKMAN 

Delft University of Technology, Laboratory of Metallurgy, Rotterdamseweg 137, 2628 AL Delft, 
The Netherlands 

(Received 18 March 1986; accepted 20 October 1986) 

Abstract 

The equations for diffraction strain pole figures 
measured on textured cubic materials exhibit an hkl 
dependence. This is expressed by an hkl-permutation- 
invariant 'surface' spherical harmonic. Four types of 
new harmonics are defined. These harmonics differ 
in essence from those for the hkl-dependent 
expression obtained for diffraction intensity pole 
figures. In the latter case associated Legendre poly- 
nomials arise whereas in the former (Jacobi type) 
generalizations of these polynomials occur. 
Equations exhibiting diffraction intensity and diffrac- 
tion strain expressions are given for all cubic point 
groups. Structure factors arise in the expressions. The 
treatment is given for both anomalous and normal 
scattering modes. Surface spherical harmonics do not 
satisfy Laplace's equation. This only occurs upon 
conversion into 'solid spherical harmonics'. Then the 
harmonics associated with intensity pole figures 
satisfy Laplace's equation. The 'diffraction strain har- 
monics' do not, however. Orthonormalization is also 
different from the case of conventional hkl-permuta- 
tion-invariant surface spherical harmonics. Stereo- 
graphic projections are given for a few examples of 
harmonics. 

I. Introduction 

Spherical harmonics occur in (among others) quan- 
tum mechanics, electromagnetism, geodesics and 
crystal physics. The present treatment deals with 
spherical surface harmonics in conjunction with crys- 
tal physics and, more specifically, residual stress 
analysis of textured cubic materials. 

The new harmonics occur in the hkl-dependent 
part of the expression for diffraction line-shift strain 
pole figures obtained on textured materials for the 
general {hkl} reflection case. Diffraction strain may 
be defined as the averaged strain of the crystals 
engaged in the diffraction experiment. It depends on 
hkl, the loading of the specimen and the orientation 
of the scattering vector Q with respect to the speci- 
men's reference axes [definition of Q according to 
Sayers (1984)]. It is determined from the shift of the 
diffraction line's profile with respect to some initial 
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condition. Crystals exhibit different strains depending 
on their orientation, when subject to an even uniform 
stress system. If the specimen exhibits crystallo- 
graphic texture some orientations may occur 
frequently, others may be absent. Consequently the 
texture enters in the diffraction strain equations 
(Brakman, 1983; Sayers, 1984). Since the diffraction 
strain depends on the orientation of Q it can be 
represented in terms of a pole figure. Like the conven- 
tional diffraction intensity pole figure, it can be depic- 
ted in a stereographic projection with respect to speci- 
men axes. By contrast with the intensity pole figure 
the strain pole figure depends on the stress state 
(residual or externally applied) of the volume of 
material irradiated. If the texture is homogeneous 
over the specimen, the intensity pole figure does not 
depend on the size of the volume irradiated provided 
grain statistics are adequately retained. The intensity 
pole figure is therefore an intensive quantity. 
Although stress and strain are also intensive quan- 
tities, the strain pole figure is an extensive quantity. 

For instance, the case of neutron diffraction 
(Sayers, 1984; Pintschovius & Macherauch, 1982) 
could yield a totally different strain pole figure from 
that obtained using X-rays. In the case of X-ray 
diffraction the strain pole figure represents a very 
local average of the specimen strains due to the strong 
attenuation of the radiation. In the neutron diffraction 
experiment the specimen as a whole may be irradi- 
ated. For each specimen the conditions of mechanical 
equilibrium must be satisfied. Then the strains due 
to macrostresses (assumed to be constant over dis- 
tances large compared with the grain size) com- 
pensate. This does not occur in the X-ray experiment. 

The intensity pole figure presents data in a (normal- 
ized) compact form allowing visual interpretation and 
presentation. The texture type can be determined 
from one or more pole figures. The strain pole figure 
may serve a similar purpose. If the texture is known 
the approximate stress state can be determined from 
the strain pole figure. Practical examples are given 
by Hoffmann, Neff, Scholtes & Macherauch (1984) 
and Hauk, Vaessen & Weber (1985). The orientation 
distribution function (o.d.f.) of the crystals of a tex- 
tured specimen is usually expanded in a series 
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(Bunge, 1982, p. 47). The expans ion  coefficients can 
be calculated f rom intensi ty pole figures. However,  
these pole figures only al low even-order (Bunge, 1982, 
pp. 100-107) expans ion  coefficients. The strain pole 
figures also exhibi t  odd-order  expansion coefficients 
(Brakman,  1985). Consequent ly  they provide a means  
of  determining the complete  o.d.f. 

For point  group 432 the expression for the diffrac- 
t ion strain pole figure (according to the Reuss model  
of  elasticity), for the hkl reflection contr ibut ion only, 
is given in Brakman (1986).* It reads (only stress- 
tensor elements 0-11 and  o'22 are taken non-zero;  the 
expression can easily be extended to the full  stress 
tensor): 

(e'zz(O, a ) ) =  sl(hkl)(o'11 +0"22)+½s2(hkl)o'~, sin 2 ~b 

+ [--So/ 2Phkt( O, a ) ]  

X [ (O'11 - -  0-22) COS 2tz - 0-,~ sin 2 ~b ] 

x E [F,(hkl, j, ~)B~(~,, ~) 
j = 4  
/~=1 

+ F2(hkl, j, tz)CJ'(O, or)] 

+ [ So/2 Phkt (~, a) ] 

X (0-11 -- 0-22) sin 2a  cos 

x Z [ - F 1  (hkl, j,/z)CJ~(O, a )  
j = 4  
/~=1 

+ F2(hkl, j,/z)B~(@, or)] 

+[so/EPh;a(¢, a ) ]  

x (0-11 - o'2~) sin 2a  sin 0 

x E [Fa(hkl, j, tz)E~'(d/,a) 
j = 4  
p ,= l  

- F~(hkl, j, #)DJ'(~, a)] 
+[So/EPhkt(¢, a)]0-~ s i n E 0  

x ~, [Fa(hkt, j, t~)D~(d/, o~) 
j = 4  
p .= l  

+ F4(hkl, j,/x)E~(~, a) ] ,  (1) 

where sl(hkl) and ½s2(hkl) are the so-called quasi- 
isotropic diffraction elastic constants (D611e, 1979). 
Phkl is defined in equat ion (15c). Apart  f rom its corre- 
sponding structure factor and a proport ional i ty  fac- 
tor, it is equal  to the single hkl reflection's scattered 
intensity. 

* For the complete mathematical treatment of the {hM} diffrac- 
tion experiment it is necessary to take at least the hkl reflection 
contribution also into account. This is discussed in more detail in 
§ 4. In order to avoid confusion, the commonly used angle q~ is 
replaced in this paper by the symbol a in the expression for the 
diffraction strain, (e'z(~, a)) [cfi equation (1)]. The angles ~b and 
a determine the orientation of Q with respect to specimen axes 
(cf. Fig. 1). 

Funct ions  B~'(g,,ol)...E~f(g,,a) are defined in 
Brakman (1986). They depend  on the texture and  
need not be discussed here. So stands for single cubic 
crystal elastic anisotropy: 

S 0 --" S l l l l  - -  S1122--  2S1212 ( l a )  

0-~ = 0-11 cos 2 o~ + 0-22 sin 2 a. (1 b) 

The stresses 0-11 and 0-22 are taken to operate paral lel  
to the spec imen 's  axes of  symmetry.* They are 
assumed to be macrostresses.  It is the purpose of  this 
paper  to deal  with the harmonics  denoted by the 
symbols  F1, F2, F3 and F4 in (1). They depend  on 
hkl, j a n d / z  s imilar  to the K~  harmonics  defined in 
(6) and (18) to (20). An example  of  a diffraction strain 
pole figure of  a cold-rolled steel specimen calculated 
for an assumed stress state of  ~/= 0-22/0-11 = 10 is given 
in Fig. 1. 

In the calculat ion use of  the {211} b.c.c, reflection 
has been  assumed and expressions involving func- 
tions F2 and  F4 were omitted. 

2.  D e f i n i t i o n s  

Spherical  harmonics  are usual ly  divided into three 
classes: 

(i) Zonal  spherical  harmonics:  the 'normal '  
Legendre po lynomia l s  Pj(cos 4 )  and  tesseral 
spherical  harmonics :  the 'associated'  Legendre poly- 
nomials  PT(cos  q~). 

* Equation (1) represents the Reuss model of elasticity. For the 
Voigt model an {hkl}-independent diffraction strain pole figure 
results. The Kr6ner model is not (yet) feasible for textured 
materials. Expression (1) averaged with the Voigt model prediction 
allows calculation of the stress state of the irradiated volume 
according to the well known 'sin 2 0 method' (D611e, 1979; Hauk, 
1984; Hauk & Macherauch, 1984; James & Cohen, 1980). 

I "q--+lO 
TD ND 

Fig. 1. Calculated {211} diffraction strain for atextured cold-rolled 
steel sheet sample. Stress state assumed: ~ = cr2Jcrtl = 10. All 
other stresses taken equal to zero. cr H operates parallel to RD 
(rolling direction). Diffraction strain (e'z) divided by s0crlt. 
Isostrain values: A -1 .60 ,  + -1 .20 ,  x -0 .80 ,  []  -0 .40 ,  V 0.00, 
• +0.40, * +0-80, • +1.20, • +1.60. Angle a measured in the 
plane of RD and TD (transverse direction). Angle ~ is the 
deviation angle from ND (normal direction): The orientation of 
the scattering vector with respect to the specimen axes is indi- 
cated by ~, a. 
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(ii) Surface spherical harmonics: 

K '~ ( cP, fl ) = P '~ ( c o s ~ ) e x p ( i m /3 ) (2) 

(angles tp and/3 according to Fig. 2). These functions 
are often used in normalized form: 

K'~(dp, /3)=(27r)- l /2P'~(cos  ~)exp( im/3) .  (2a) 

If we use a definition of the associated Legendre 
polynomials such that (Bunge, 1982, p. 356) 

~ P~"(cos ~)P~'(cos tP) sin tP dip = ~jj,, (3) 
o 

it follows that* 

m m" ) ,  Kj (tP,/3)Kj, (q~,/3 sin tp dip d/3 = 8~,6,,,,,. (4) 

(In what follows the spherical surface element 
sin tp dip d/3 will be denoted by dA.) These functions 
occur (apart from a factor) as eigenfunctions of the 
squared angular momentum operator of a single par- 
ticle in quantum mechanics (Landau & Lifshitz, 1974, 
p. 54) and also as eigenfunctions of the squared 
differential operator for infinitesimal rotations 
(Gel'fand, Minlos & Shapiro, 1963, p. 41). 

(iii) Solid spherical harmonics: 

u = r J K ' ~ ( ~ , / 3 )  or u=r-J- lK ' f l (cP ,  fl). (5) 

These functions are particular solutions of Laplace's 
equation Au = 0 (case of m = 0 included) and r is a 
radius vector. 

The K~' satisfy mathrmatical constraints: 
(i) They are continuous in the poles of the sphere, 

i.e. exhibit the same value for all/3 if tP = 0 or • = rr. 
(ii) They exhibit the same value if/3 is replaced 

by/3 +27r; 'cyclic behaviour'. 
(iii) They satisfy the orthonormalization condition 

of (4). 
(iv) Upon multiplication by r j or r -j-I they satisfy 

Laplace's equation. However, for the physics dis- 

[oo'1] 

[hkl] 

{a,~a] 

* The asterisk in mathematical expressions denotes the complex 
conjugate. 

Fig. 2. Definition of angles • and /3 with respect to crystallo- 
graphic axes. The expressions relating tp and /3 to [hkl] are 
given in equations (I-14) and (I-15). 

cussed in this paper Laplace's equation does not need 
to be satisfied. 

For the application to crystal physics one often 
needs harmonics satisfying the symmetry of the point 
group of the crystal under consideration (Betts, 
Bhatia & Wyman, 1956; Von der Lage & Bethe, 1947; 
Meyer, 1954; Fox & Krohn, 1977; Kara & Kurki- 
Suonio, 1981). 

2.1. Symrnetrized harmonics 

The symmetry elements of a crystal point group 
can be seen as transformations of crystal reference 
axes. They operate on orientations. For such orienta- 
tions, the parent and product crystal orientations are 
physically indistinguishable. In texture analysis, the 
symbol g is commonly used for orientations and 
transformations of orientations, g can be written as 
a 3 x 3 matrix. 

There are three types of crystal point-group sym- 
metry elements: 

(i) Pure rotations of which the determinant of g is 
equal to +1, 'proper rotations'. 

(ii) Mirror-like operations without an explicit 
centre of inversion. 

(iii) Centres of inversion. 
In the two latter cases det (g) is equal to -1 .  The 

harmonics treated in this paper are all defined with 
respect to crystal reference axes. 

For the construction of harmonics satisfying point- 
group symmetry one can proceed in two different 
ways: 

(a) Construct linear combinations of harmonics 
K~' and impose the symmetry elements upon them. 
This method can be applied for the case of cubic 
harmonics associated with diffraction intensity pole 
figures: 

J 
A~"K~(O,#). (6) KJ '( tP, /3)= Y. -v - - J ,  

m = - - j  

The coefficients can be chosen real (Bunge, 1982, 
p. 267) and they can be made to satisfy the symmetry 
requirements of the point group. Equation (6) rep- 
resents a linear combination of the normal harmonics 
K~ and/.1, enumerates the number of possible linearly 
independent constructions K~. 

It is required that 

K~(cI) , /3)K~t ' (~ , f l )*  dA=6j/6+,~,, (7) 

and 

J 
~. A?"A?"'= ~,,,,.. (8) 

m = - j  

The total number of possible linearly independent 
constructions according to (6), i.e. /Zmax, has been 
given by Bunge (1982, pp. 62 and 365) for even j  and 
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odd j, respectively./Zmax depends on the point group. 
For non-cubic point groups the coefficients Aj "~" take 
a very simple form (Bunge, 1982, p. 383). For the 
cubic point groups the full series expansion [cf. (6)] 
is needed owing to the threefold axis. The 
coefficients* cannot be written in a simple form; they 
have been tabulated by Bunge (1982, p. 501) for point 
group 432. 

(b) For both intensity and strain pole figures the 
hkl-dependent harmonics arise as a consequence of 
the physics of the problem..For both types of pole 
figure the value of the function in the direction of Q 
is obtained as an average over the crystal orientations 
engaged in the diffraction. For textured materials, the 
orientation distribution function (o.d.f.)t of the crys- 
tals then occurs in the equations for the averaging 
procedure. 

The o.d.f, is a function of orientations. It is defined 
for orientations obtained via rotations only. The rota- 
tional symmetry elements of the crystal's point group 
can be imposed upon the o.d.f, with the cubic sym- 
metry coefficients Aj "~' treated in § 3. See also Bunge 
(1982, p. 384). 

In the eventual equations for both types of pole 
figure, harmonics arise satisfying the rotational sym- 
metry elements of the point group considered. 
However, in some cases the harmonics satisfy addi- 
tional symmetry elements not imposed on the o.d.f. 
This may be due to: 

(i) The physical nature of the diffraction experi- 
ment. Expressions for the contributions from crystal 
orientations exhibiting [hkl] parallel to Q and [hkl] 
parallel to Q have to be added. Harmonics satisfying 
only point group 432 are then cancelled whereas 
harmonics satisfying m3m are retained. The same 
holds for point group 23 with respect to m3. 

(ii) The value of both intensity and strain in the 
direction of the scattering vector Q is an average over 
basically the two orientation types mentioned above. 
The averaging covers 2~r rad rotation about Q [angle 
q~ in Brakman (1985)]. The o.d.f, is a function of 
three independent (Euler) rotation angles for fixed 
orientation of Q. The three angles determine the 
crystal's orientation with respect to the laboratory 
frame. The harmonics can be seen as a result of 
integration of the o.d.f, with respect to one (Euler) 
angle, i.e. q~. For the diffraction strain the same holds 

* In Bunge's formalism the cubic symmetry coefficients A7 u" and 
also the harmonics K~" are usually written with two dots 
A'fl ~" etc. In this paper only cubic point groups are treated and 
since no confusion is to be expected the quantities are written 
without dots. 

t The o.d.f, may be defined as follows: consider the volume 
fraction dV/V of the crystals (of one metallurgical phase) with 
orientations in the interval between g and g + dg. The proportional- 
ity factor is the o.d.f.,f(g); d V/V =f(g) dg. Evidently it is normal- 
ized such that the integral over all orientations yields unity. 

but the o.d.f, times the single-crystal strain* is 
averaged with respect to q~. As a consequence of the 
averaging with respect to this angle, the behaviour 
with respect to symmetry of both harmonic types may 
be different from that of the o.d.f. 

In this paper method (b) is used since the har- 
monics associated with the strain pole figures cannot 
be derived using method (a). 

2.2. Symmetry 

A clear distinction must be made between the sym- 
metry exhibited by the o.d.f, and by the harmonics. 
The symmetry of  the o.d.f, may be defined as follows. 
Consider a crystal symmetry element leaving the value 
of the o.d.f, unchanged in the crystal's product 
orientation with respect to the parent orientation. 
These orientations are physically equivalent. Then 
the o.d.f, may be said to exhibit symmetry with respect 
to the crystal symmetry element. The symmetry of the 
o.d.f, is defined with respect to orientations. The sym- 
metry the harmonics satisfy may be defined as follows. 
The harmonic is some continuous function of two 
independent angles defined with respect to crystal 
reference axes. The harmonic is a function of direc- 
tions. If "a crystal symmetry element is applied to 
crystal reference axes, the behaviour of the har- 
monic's function may be left unchanged. That is, the 
(curved) surface representing the function (plotted, 
for instance, with respect to a reference sphere) 
coincides exactly in the product and parent orienta- 
tions of the crystal reference axes. However, this only 
occurs for the pure rotational symmetry elements (cfi 
Figs. 3 to 8). Therefore it is better to define the 
symmetry of the harmonics with respect to directions. 
The symmetry definition then reads: apply a crystal 
symmetry element to the crystal reference axes. The 
same vector fixed in space exhibits different elements 
in the parent and product orientations. The har- 
monic's function value may be left unchanged in the 
direction of the vector in the parent and product 
orientation. Then the harmonic exhibits symmetry 
with respect to the crystal symmetry element. 

* If single-crystal strain is the consequence of some stress state, 
it follows (since the single-crystal compliances and stiffnesses are 
the same for all cubic point groups) that the single-crystal strain 
in the direction of Q is invariant for all crystal symmetry operations 
according to point group m3 m. The symmetry of the o.d.f, is lower 
(432 at most). Hence the symmetry of the product of o.d.f, and 
single-crystal strain is determined by the o.d.f.'s symmetry. One 
would expect that upon integration with respect to the rotation 
angle about Q the same symmetry behaviour of harmonics 
FI . . . . .  F4 would result as was found for the K~' case. This does 
not occur, however. The reason is that the intensity only depends 
on the zero-order variation of the o.d.f, with respect to the rotation 
angle. The diffraction strain depends on the first- and second-order 
variations of the o.d.f, and the single-crystal strain with respect to 
this angle (Brakman, 1985). 
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This definition allows all possible symmetry ele- 
ments, those of the 'second kind'* (changing a right- 
handed frame of reference into a left-handed one), 
included. Examples are given in Table 7 and Figs. 3 
to 8. 

2.3. The o.d.f vs crystal point-group symmetry elements 
of the second kind 

Crystals belonging to one metallurgical phase may 
exhibit fight-handed or left-handed behaviour 
(Bunge, 1982, p. 100). They may occur in different 
fractions and exhibit different o.d.f.'s. Consequently, 
a distinction has to be made between the left-handedt 
and fight-handed o.d.f.'s (Bunge, 1982, p. 103) indi- 
cated by fL(g) and fR (g). If the crystal's point group 
only exhibits pure rotations, these two o.d.f.'s are not 
related. They both enter in the eventual scattered 
intensity expression (Bunge, 1982). Consequently, the 
fractions of left- and right-handed crystals then have 
to be known. 

If the point group exhibits a centre of inversion 
the crystals can be seen as left- and fight-handed at 
the same time (Bunge, 1982, p. 105). Then fL and fR 
are identical. 

For the point groups exhibiting mirror-like sym- 
metry elements but not an explicit centre of inversion 
(for instance, ~,3m) a similar condition follows. Then 
f "  and fR  are one-to-one correlated.$ From this it 
follows that for all three possible crystal point-group 
symmetry cases treatment of the pure rotation ele- 
ments is sufficient. For the rotational point groups, 
the treatment o f f  L is self-evident (Bunge, 1982). Only 
fR is used in what follows. 

3.1. Point group 23 

With an expression given by Esling, Bechler-Ferry 
& Bunge (1981) it can be shown that 

1 [ sin(2j+l)Tr/3sinrr/3 ] ~max(j) = "i- ~ (2j+ 1)+8 ~-3(-lY 

(9) 

(/Zmax determines the number of linearly independent 
A~ "" solution vectors for a given j),  from which it 
follows that 

~/ .max  = 0 for j  = 1, 2, 5, (10a) 

and 

]'/'max ~-" 1 for j  = 0, 3, 4, (10b) 

~max (j-t" 6) =/Zmax (j) -k 1. (11) 

It can be shown that the symmetry elements of this 
(pure rotation) point group yield (via the o.d.f.) the 
following 'selection rules': 

(i) Twofold axis in [001]: 

m = multiple of 2. (12) 

(ii) Twofold axis in [100]: 

A-f"~" = ( -  l yA'~ ~'. (13) 

The twofold axis in [010] does not lead to anything 
n e w .  

(iii) Threefold axis in [111]: 

J 

A~"= 2 (-1)"/2A'~"P'~S(cos ~/2)  (14a) 
m = - j ( 2 )  

3. The cubic symmetry coefficients AT ~ 

The purpose of these coefficients is to render the value 
of the o.d.f, invariant with respect to (rotational) 
point-group symmetry elements (Bunge, 1982, pp. 
363-369). In the expressions for diffraction intensity 
and diffraction strain pole figures the same cubic 
symmetry coefficients A~ '~" occur. In this section they 
are studied for the lowest possible cubic symmetry, 
i.e. point group 23. The coefficients A~ '~' for the 
higher-symmetry point groups are shown to be a 
subset of these. 

* Terminology due to Bunge, Esling & Muller (1981). The deter- 
minant of the matrices of these elements is equal to -1. 

t The left-handed o.d.f, is also a function of rotations only. 
The o.d.f, series-expansion coefficients of the left- and fight- 

handed o.d.f.'s can be expressed in each other, accordingly: see 
equation (79) of Bunge, Esling & Muller (1981). Note that for this 
point group one physical crystal is fight- and left-handed at the 
same time [Bunge, 1982, equation (27)], like the centrosymmetric 
crystal case. 

for a rotation of 2¢r/3 about [111]; 

J 
A]~' = ( -1)  s/2 Y~ A~'~" PT'S(cos 7r12)  (14b) 

m = - j ( 2 )  

for a rotation of 4zr/3 about [111] (in both cases 
s = multiple of 2). 

It is suggested by (14a) and (14b) that two series 
of possible solutions exist for the coefficients A~ ~'. 
However, it can be shown for both even and odd j 
that (14a) and (14b) lead to the same solution. 

Two kinds of solutions for both equations are alter- 
nately obtained [using (14a) or (14b) and (8)]: 

(i) A solution vector [consisting of all A~ "~' with 
m = - j (2 ) j  for a given value of/~] where the A~ TM for 
both even and odd j are only significantly different 
from zero if m = multiple of 4. Then (14a) and (14b) 
are identical. On inspection (Bunge, 1982, p. 501) it 
is seen that the A~ "~' coefficients for point group 432 
are obtained. This is logical since the higher symmetry 
(432) also satisfies the lower (23). 
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(ii) A solution vector where the Aj "~" are only sig- 
nificantly different from zero for even m not a multiple 
of 4 for both even and oddj .  Then, (14a) and (14b) 
are also identical. These A~ '~' are the 'pure' point- 
group 23 cubic symmetry coefficients. Computer out- 
puts exhibiting these coefficients for j = 4(2)52 and 
j = 3(2)51 can be obtained from the author. 

Upon analysis, the solutions are alternately 
obtained, the index/x enumerating them in systematic 
order. For instance,/z = 1 yields a '432' solution,/z -- 2 
stands for a 'pure 23' solution etc. This choice is 
purely arbitrary and could lead to confusion among 
different laboratories. 

3.2. The other cubic point groups 

The coefficients Aj "~ for point group 432 are con- 
tained within the solutions obtained for the 23 case 
as indicated in _~ 3.1. The A~ '~' coefficients for point 
groups m3 and 43m are identical to those of 23. The 
Aj " coefficients for point group m 3 m  are identical 
to those of 432. 

However, a difficulty now arises. The symmetry 
elements of the second kind [det (g) = -1 ]  of these 
point groups could be taken as imposing additional 
restrictions on the Aj "~'. For instance: 

(i) It could be taken from the K~" harmonics that 
the A~ "~" should be equal to zero for odd j for point 
groups m3 and m 3 m  using their centre of inversion. 
The same holds with respect to their {h00} mirror 
planes. 

(ii) The {hh0} mirror planes occurring in point 
groups m 3 m  and 43m could lead to the condition 
that A y " = ( - 1 ) " / 2 A ]  '~" for the KJ" harmonics 
(Bunge, 1982, p. 385) in addition to (13). 

However, these restrictions do not lead to fulfilment 
of the same symmetry elements in harmonics 
F~,. . ., F, .  

If one starts from the harmonics F1, . . . ,  F4 the 
imposed symmetry is not satisfied in the K)" har- 
monics. From a principal point of view there is no 
preference for one type of harmonic. Therefore, 

(i) "i'he cubic symmetry coefficients should be 
defined using the rotational symmetry elements of the 
crystal point group considered. The symmetry ele- 
ments should be taken as transformations of orienta- 
tions. 

(ii) The coefficients generate the symmetry of the 
o.d.f, with respect to (rotational) crystal point-group 
symmetry elements (Bunge, 1982, pp. 48 and 366). 
They should be derived via expressions obtained from 
the o.d.f. (Bunge, 1982, pp. 363-369). They should 
not be derived from the harmonics K~" or F1 , . . . ,  F4. 

(iii) Fulfilment of symmetry elements of the second 
kind in the harmonics K J" and F~, . . . ,  F4 is obtained 
by imposing selection rules on j and m as indicated 
in Table 7. No additional restrictions on the A~ TM are 
necessary. 

4. The polycrystalline diffraction experiment 
performed on textured materials 

According to § 2.3 only point groups 23 and 432 are 
necessary for the mathematical treatment of the 
diffraction experiment for all cubic pointgroups. This 
holds whether crystals belong to m3 or 43m (as com- 
pared to 23) or m 3 m  (as compared to 432). 

Only the right-handed o.d.f, is taken into account. 
Upon diffraction, all crystal orientations exhibiting 
an (hkl) vector parallel to the scattering vector Q 
contribute. The number of physically equivalent crys- 
tal orientations contributing is determined by the 
number of symmetry elements of the point group 
considered. 

Use of the rotation elements of the point group 
leads to an expression for the diffracted intensity and 
the diffraction strain via the o.d.f. For the mathemati- 
cal treatment of the { hkI} diffraction_experiment only 
the expressions for the hkl and hkl  reflections have 
to be considered for the 432 ease* (Brakman, 1985). 
Multiplied by their appropriate weight factors,t their 
sum ~'epresents physical reality. 

Point group 23 does not exhibit fourfold rotation 
symmetry elements. Consequently, the treatment of, 
say, the khl and k-hl reflections in addition to those 
mentioned is necessary for this point group. The 
structure factors for the hkt and khl reflections are 
different for point group 23. For the case of normal 
scattering the structure factors of hkl and hkl  reflec- 
tions are equal (all point groups, Friedel's_law)._ The 
same holds for the khl with respect to the khl  reflec- 
tion. In the case of anomalous scattering the structure 
factors are unequal and Friedel's law does not hold. 

For all cubic point groups it holds that 48 permuta- 
tions of h, k and l leading to 48 {hkl} lattice planes 
diffract at the same 20, equal structure factors or not. 

The relationships between the structure factors for 
the various cubic crystal classes in conjunction with 
both anomalous and normal scattering are summa- 
rized in Table 1. 

4.1. Diffraction intensity pole figures 

It can be shown that the {hkl} intensity pole figure 
exhibits the following expression for the case of 

* This corresponds to two physically different orientation types 
contributing at the same time: (i) Crystal orientations exhibiting 
[hkl] parallel to Q. All orientations obtained from this one using 
a (point-group allowed) rotational symmetry element are physi- 
cally equivalent and hence not treated. (ii) Crystal orientations 
exhibiting [hkl] parallel to Q. For the general hkl case the latter 
orientation cannot be obtained from the former by a rotation 
(Brakman, 1985) nor does it imply an inversion of the crystal's 
reference axes. Generally, the o.d.f, differs in these two orientation 
types. Consequently, the hkl and hkl intensities are different, too. 

t Le. 2 2 2 2 2 2 SnKr/(Snx1+ Sag£) and Sagc./(SnxL + Sae_c) where 
SnKL is the geometric structure factor. See also Bunge & Esling 
(1981). 
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Table 1. Relationships between squares of geometric 
structure factors for cubic point groups in conjunction 
with anomalous scattering and normal scattering (note 

the use of Laue indices) 

C u b i c  A n o m a l o u s  sca t te r ing  N o r m a l  sca t te r ing  
po in t  g r o u p  (a.s.) (n.s.) 

23 Four structure factors all S2gr_ = S 2 r L  

different from each other; S2gHC = S2r~t 
no relationships 

m3 m 

43m 2 z S g n £  = S~KL 
2 2 

S K trt L = SicilY. ~ 

432 S2KtTtL = S2HKL 

s~.,c = s~gc 

As above 

As left-hand column + 
S~c = S~:~ 

2 2 
S g H f  " = SKI,7tL 

As left-hand column+ 
2 2 

SiY.lg £ = S H K  L 
2 2 

S R H  f" = SKIEtL 

m 3m - -  As above 

crystals belonging to point group 23 in conjunction 
with anomalous scattering: 

/;hk,(0, ,~) 
= Aj ( -1  exp ~) ~. C~"E ",,v )./2 (ina)pO.(cos 

j ~ v  n 

J 
x Y. ( -1)" /2A~ '" exp(-imfl)P'~°(cos ~)  

" = - - j  

x [ 12S~KL. + 12(-  1)"/2S~:aL 

+ 12(-1)JS~gc+ 12(-1)J+"/2S2gnr. ] 

x (12S2Kt. + 12S2m. + 12S2g£+ 12S~nc) -~, 

(15a) 

where 0, ce is the direction of the scattering vector Q 
with respect to specimen reference axes. The C~ ~ are 
the well known o.d.f, series-expansion coefficients. 
S~KL stands for SHKL times its complex conjugate. 

A clear distinction is made between the quantities 
Phu and ff'hkt. Phkt stands for the (structure-factor) 
weighted {hkl} scattered intensity constituted by the 
reflections according to the physically different per- 
mutations of h, k and I. Apart from a proportionality 
factor, it is equal to the measured scattered intensity. 
The denominator in (15a) serves as a normalization 
with respect to the structure factors. As a con- 
sequence, the integral 

ff~hkl(l~, Ol) sin ~b d~b da  -=4rr (15b) 

as required. 
The quantity Phkl is defined via the o.d.f: 

2rr 

Phkz(~b, a)  = (27r) -~ ~ o.d.f. (~, a,[hkl], ~ )  d¢~. 
o (15c) 

The equation is written for the single hkl reflection. 
It may occur that the structure factor of the reflection 
is equal to zero whereas the o.d.f, is non-zero. There- 

fore, it should be written 

AS uKL Phkt (15d) I H K L  = 2 

where HKL are Laue indices. InKL is the integrated 
(with respect to 20) intensity of the HKL reflection 
and A is a proportionality factor. Phkz is written using 
Miller indices since it does not depend on the order 
of the reflection. The relationship between fihkt and 
Phkt is given in Table 2. 

The harmonics of interest are given by the m sum 
in (15a). 

Although the equations given may look compli- 
cated, essentially only one type of hkl-dependent 
harmonic emerges: 

K ? ( ~ ,  fl) 
J 

= E (-1)"/2A'~'P'~(cos ~ ) e x p ( - i m f l ) .  
m=-)(2) (16) 

P~°(x) in (15a) can be reduced to P'~(x) using 

p T ' ° ( x ) = ( - 1 ) " / 2 1 2 / ( 2 j +  l ) ] ' /2PT' (x) .  (17 )  

The factor ( -1 )  "/2 in (15a) can then be omitted 
(m = multiple of 2 in all cases). Evidently, on some 
occasions [(15a)] an additional factor ( -1 )  "/2 is 
introduced. It seems that an additional type of har- 
monic arises, different from (16) in that the factor 
( -1 )  "/2 is absent: 

J 
K ~ ( ~ , f l ) =  Y. A?~'P~'(cos ~ ) e x p ( - i m f l ) .  

" = - j ( 2 )  (18) 

However, for the 432 and m3m case (m only equal 
to a multiple of 4) (16) and (18) are identical. 

Exactly the same holds for the 23, m3 and 43m 
cases if the '432 solution' for the A~" coefficients is 
used. And it follows from the 'pure 23 solution' (§ 3.1) 
for these coefficients that (16) and (18) then differ 
only by a minus sign. 

Consequently, (16) is taken as the definition of the 
harmonics associated with intensity pole figures. Note 
the similarity of (16) to (6). It also follows that in all 
cases (16) reduces to 

J 
K ~ ( ~ , f l ) =  ~ (-1)"/2A'~'P'~(cos q0) cos mfl 

"=-j(2) (19) 

for even j and 

J 
K~(q~,/3)= E (-1)"/2A'~'P'~(cos ~ ) s i n  m/3 

" =-j(2) (20) 

for oddj [a factor ( - - 1 )  t /2  has been omitted in (20)]. 
In Table 3 the other cubic point groups in conjunc- 

tion with both anomalous and normal scattering are 
dealt with. The intensity expression is similar to (15 a). 
The quotient involving the structure factors, however, 
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Table 2. { hkl} intensity expression ehkl [ cf. equation (15 a ) ] for combinations of cubic point groups and scattering 
modes 

For point group 23, four physically different hkl reflections occur (same 20). The quantities Pkat etc. are defined in equation (15c). 
Weighted with their structure-factor squares, they constitute Phkt. The  denominator D normalizes the expression with respect to structure 
factors. Apart from a proportionality factor, Phkt stands for the measured intensity. It depends on ~, a (i.e. the orientation of  the 
scattering vector with respect to specimen axes). It is equal to the {hkl} intensity pole figure. The expressions for the pure-rotation 
point groups do not exhibit the left-handed crystal contributions. Their treatment is not essentially different (Bunge, 1982, p. 102) 

Point group and 
scattering case Constitution of  {hkl} scattered intensity expression D 

2 2 2 --1 2 2 2 2 23 and a . s .  [ S HKL Phkl "q- S IYII~E P~r+ S KaL P kf;t -I- S RH E P ~h'f ] D S I-IKL'~ S IT.IRfi"~" S K a L  + S RH£ 
2 2 --1 2 2 23 and n.s. [SHrt.(Phkt + Pt;~r) + SKat.(Pkth + P~hr)] D 2[ SHKL + SKaL] 

or m3 

43m and a.s. [S~KL(Phkt+ P~hr)+ S2gc(Pa~r+ Pk~t)]D -1 2[SHKL2 + Sagc]e 

43m and n . s .  [ Phkt + Pa~r+ Pkfil q- P~hr]D -1 4 
2 2 --1 432 and a.s. [ S H r L  Phkl -I- S a g  E Pa~r]D [ S 2 K L  -I- S2gf_,] 

432 and n.s. [Phkt + Pt;~r] D-1 2 
or m3m 

Table 3. Elaboration of scattered intensity expression Phkt 

The quotient in equation (15a) should be replaced by the second-column expression. The symmetry satisfied by the hkl -dependent  part 
of  the intensity expression is displayed in the fourth column. On some occasions this expression satisfies symmetries other than those 
introduced via the point group (cf. § 2.2). An entry m 3 m  in the fourth column signifies that all cubic point groups are satisfied. The 
data of  the third column lead to the so-called ghosts (Esling, 1981; Bunge, 1982, p. 116). Left-handed cystal contributions not shown. 

Tables 2 and 3 take on a simpler form for the more symmetric {hk0} and {hhl} reflections 

Values of  j and m 
Point group and Expression instead of  blotted out from 
scattering case the quotient in equation (15a) intensity expression 

23 and n.s. ½[I +(_I)J][S2rL + ,./2 2 2 2 ( - 1 )  SKaL]/(SHKL + SKF~L) j = odd 
or m3 

1 j+, . /2  2 j 2 2 2 Fl3m and a.s. ~[1+(-1) ][SmcL+(--1) S~gf.)/(SHKL+S~g£] 1. j=even / 
m = +2, + 6 , . . .  f 

2. j = odd 1, 
m = 0, +4, . . .  J 

1. j = o d d  
2. j = even 1 

m = 4-2, 4-6,... J" 
m = +2, 4-6,... 

7~3m and n.s. 

432 and a.s. 

¼[1 + (-l)J+"/2][ 1 + (-I) J] 

1 m/2 2 j 2 2 ~[1+(-1) ][SHKL +(--1 ) SIT-I.~£]/(SHKL'~-S2Rfi_,) 

432 and n.s. ~[1+(--1)m/2][1+(--1) J] 1. j = o d d  
or m3m 2. m=+2 ,+6 , . . .  

Symmetry satisfied by 
hkl -dependent  part of  
intensity expression 

(cf. Table 7) 

23 and m3 

1. j = even 1 m3m m =O, +4, . . . f 
2. j = o d d  l 23 and ~,3m m=+2,  ±6 . . . .  J 

, j = even }m3m 
m = O, 4-4,... 

1. j = even }m3m 
m =0,+4 , . . .  

2. j = o d d  l 432 m =0, +4,. . .  S 

j = even 1 
m 3Jn m = 0, +4,. . .  J 

should be replaced by the corresponding second- 
column entry of Table 3. Except for the 23+ 
anomalous scattering case a certain amount of har- 
monics does not arise in the final intensity expression 
(third column of Table 3). This represents the so- 
called 'ghost' phenomenon well known in texture 
analysis. 

4.2. Diffraction strain pole figures 

Instead of the harmonics K) ~ of § 4.1 the harmonics 
F, . . . ,  F4 [cf. equation (1)] arise as the hkl-dependent 
part in the theoretical expression for diffraction strain 
pole figures (Brakman, 1986). They can be seen as 
surface spherical harmonics, but their properties 
differ from those of the KJ ~. These harmonics can 
only be arrived at via the o.d.f. Hence, they cannot 

be constructed using method (a) of § 2.1. In Appendix 
I* they are defined as a function of hkl, j and /z. 
However, use of (I-14) and (1-15) allows them to be 
expressed generally in qb and/3. The definitions 

A(O,/3) = ~[2 sin 2 • sin 2 2/3 - ( 2 - ½  sin 2 2/3) sin 2 2~]  

(21) 

and 

B(O,/3) =¼ sin 4/3 cos Osin  2 ~ (22) 

* Appendices I-III ,  which give further details of  complex mathe- 
matical expressions, have been deposited with the British Library 
Document Supply Centre as Supplementary Publication No. SUP 
43428 (7 pp.). Copies may be obtained through The Executive 
Secretary, International Union of  Crystallography, 5 Abbey 
Square, Chester CH1 2HU, England. 
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lead to 

F,(q~,/3,j , /z)= a(q~,/3) 
J 
E 

m = - j ( 2 )  

(- 1)m/2A'~ 

x PT'E(cos q~) cos m/3 
J 

- B(q~,/3) E (-1)m/2A'~ r' 
m = - j ( 2 )  

x p~,2(cos q~) sin m/3 (23) 

Fz ( dP, /3, j, p, ) = A ( ~, /3 ) 
J 
E (-1)'/~A? " 

m = --j(2) 

x P~'2(cos q~) sin m/3 
J 

+ B(@,/3) Y~ ( -  1)'/2A7 '~' 
m = - j ( 2 )  

x P~'2(cos @) cos m/3. (24) 

The definitions 

C(q~,/3) = ~(sin 4(/) + sin 2(/) sin 2 q) sin 2 2/3) (25) 

and 

D(q),/3) = ~ sin 3 q~ sin 4/3 (26) 

lead to 

J 

F3 ( clg, /3, J, lx ) = C ( ~, fl ) X ( -  1)'/2A~ "~' 
m = - j ( 2 )  

x PT"(cos qb) cos m/3 
J 

- D ( ~ , / 3 )  X (-1)"/2,47 '~' 
m = - j ( 2 )  

x P~'l(cos q~) sin mr, (27) 

J 
F4(~,/3,j, t x )=C(~ , / 3 )  Y" ( -  1)"/2A~ '~' 

m = - j ( 2 )  

x pj,  t (cos q~) sin m/3 
J 

+D(~ , /3 )  ~, (-1)m/zA~ '~" 
m =-- j (2)  

x P?l(cos q~) cos m/3. (28) 

The expressions for A , . . . ,  D arise as a consequence 
of cubic-crystal compliance or stiffness-tensor trans- 
formations (Brakman, 1983, Appendix II). Functions 
F l and F z are purely real whereas F 3 and F 4 are 
purely imaginary. These functions behave as (sym- 
metrized) harmonics.* The symmetries these har- 
monics satisfy are summarized in Table 7. 

* The definition of functions PT'" is given by Gerfand, Minlos 
& Shapiro (1963, p. 85) and by Bunge (1982, p. 351). The general 
differential equation these functions obey reads (Gel'fand, Minlos 
& Shapiro, 1963, p. 82): 
dzP~nn(cos  ~ ) / d ~ Z + c o t  ( ~ )  dP~n"(cos  ~ ) / d ~  

+ [ j ( j + l ) - ( n 2 - 2 m n  cos  qb+  m 2 ) / s i n  2 @ ] P ~ ' " ( c o s  @ ) = 0 .  

For n = 0 the 'normal' Legendre differential equation is obtained. 

From the definition 
2w 

g(hkl)= ~ [o.d.f.(@, a,[hkl], q~) 
0 

× compliance ([hkl], q~'2) 

×stress (¢~)] dq~, (29a) 

it follows that the expression for the hkl reflection 
diffraction strain [equation (1)] is the consequence of 

2~- 

(e'zz(qJ, c~))= g(hkl)/  ~ o.d.f. (qJ, a,[hkl], ~,~) d¢;.  
o 

(29b) 

The strain is determined in the direction of the Z axis 
of a laboratory frame. This Z axis is parallel to Q 
and consequently parallel to the diffracting lattice 
plane normal [hkl]. The integration only includes 
those crystals with [hkl] parallel to Q. The 
denominator is a normalization factor, and is defined 
in (15c). In the numerator, the o.d.f, expression 
depends on q~ and a and the orientations of the 
crystallites with [hkl] parallel to Q. The numerator 
comprises a summation over products of compliance 
and stress-tensor elements. For the Reuss model, the 
stresses are taken out of the integration. 

Equation (29) is written for the hkl reflection only. 
However, the hkl reflection also contributes at the 
same time. A similar expression to (29) can then be 
written. 

The question arises of how the 'measured' diffrac- 
tion strain (i.e. the composition of the weighted contri- 
butions of the various reflections) expression is con- 
stituted. The 20 shifts of the centroids of the hkl and 
hkl line profiles can be shown (via Bragg's law) to 
lead to an expression: 

(e'zz)=[S~KLg(hM)+ S~gr_g(hkl)] 

x [27r(S~K£ + S~er_)Ph~]-' (30) 

[the factor 7r is cancelled upon integration of (29a)]. 
The procedure can be extended to all combinations 
of crystal point groups and scattering modes. The 
result is shown in Table 4, which exhibits a close 
analogy to Table 2. 

It can be seen from (1) that four different 
expressions occur involving the stresses ~1 and cr22 
in conjunction with the functions F1, . . . ,  F4. They are 
a part of the g(hkl) function. 

All four of them are displayed in Tables 5 and 6 
together with the coefficients they exhibit in the evalu- 
ated Table 4" expressions. The texture-free terms 
s~(hkl)[o.11 + o'22] and ½s2(hkl)o',~ sin 2 qJ are not writ- 
ten. They are independent of the permutation of h, 
k and l and these two terms remain unchanged in 
the eventual equation. The complete {hkl} diffraction 
strain equation is obtained as follows: 

(i) Start with the s~ and ½s2 expressions. 
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Table 4. Diffraction strain pole figure expression (e~) in terms of structure factors, the function g(hkl) defined 
in equation (29a) and the quantity Phkt defined in equation (15a) and Table 2 

No elasticity model has yet been used since g(hkl) is written for the general case. Function g(h/d) is basically the numerator of  the 
RHS of equation (1). (e'~) represents the {h/d} measured diffraction strain. In equation (1) only the hkl reflection is treated. Even in 
the most symmetric case [bottom row of  this table and equation (30)] the additional treatment of  the /~/~l" reflection is required. For 
point groups not exhibiting fourfold axes, four reflections according to four physically different permutations of h, k and l constitute 
the (e'z~) expression. Through g(hkl) and Phkl; the diffraction strain depends on ~b and a. (e'zz) can be seen as a diffraction strain pole 
figure. Left-handed crystal contributions not shown. 

Point group and Constitution of {hkl} diffraction strain (e'~) D[ff~hkl according to 
scattering case [g(h/d) according to equation (29a)] equation (15a) and Table 3] 

23 a n d  a . s .  [ S2gLg(hkl)+ S 2 g c g ( h k l ) +  S2FiLg(khl)+ S2nEg(khT)]D-1 2 2 2 2 " [ SHKL + SlSIgZ+ SKIYlL + S~H£]27rPhkl 
23 and n.s. or m 3 {sErc[g(hkl)+g(hk'f)]+ S2~c[g(ld~l)+g(khD]}D-I 2[SHK L 2  + SKFIL] WPhk l ~  

43m and a.s. {S2rL[g(hkl)+g(khT)]+ S2g£[g(hk'f)+g(khl)]}D -l 2[SHrL+2 S~gg]27rPhk t 2  " 
43 m and n.s. [g(hk/) + g(/~/~T) + g(k/~/) + g(k,h 1)] D -1 8 ~rPhkt 
432 and a.s .  [ S2HKLg( hkl) + S2g£g( K£r) ]D -~ [ S2HKL + S2g£]EcrPhkl 
432 and n.s. [g(hk/) + g(/~/~l')]D -1 [case treated in Brakman (1985)] 47rPhk t 

or m3m 

Table 5. Elaboration of {hkl} diffraction strain expression (cf. Table 4) for point groups 23, m3, 432 and m3m 

Functions B~($, a )  . . . .  , E~($,  a )  defined in Brakman (1986). Functions FI . . . . .  F4 (depending on hkl, j and /z )  defined in equations 
(21) to (28). For point groups 23, m3 and 43m the (e'z) expression is evaluated by multiplying alternately the second or third column 
by the stress expressions in the left-hand column. The resulting four expressions are multiplied by So(2Phkt) -~ and added. The texture-free 
contribution s~(h/d)[trn+tr22]+ls2(h/d)% sin2$ is not shown since it does not depend on the point group or the scattering mode. 
Only stresses trt~ and tr22 are taken into account. Coefficients c t , . . .  , c5 depend on the structure factors. They are defined in equations 
(31a) to (31e). Note the vanishing of  the non-centrosymmetric functions F2 and/ :4  upon changing from the anomalous to the normal 
scattering mode. The symmetries to which the functions F~,..., F 4 are subject are given in Table 7. In Tables 2 to 5 the cases of  23 + n.s. 
and 432 + n.s. have been taken equivalent to m3 and m3m, respectively. However, although normal scattering renders S2m. and S~g£ 
equal, an essential difference remains. For m3 and m3m the left-handed o.d.f, does not have to be treated. For 23 and 432 the left-handed 
o.d.f, may be essentially different from the right-handed one. This fact is not changed in normal scattering. 

Coefficients of  left-hand 
column in (e'z~) expression 

'23 solution' for 
Ay'~ coefficients 

23 and a.s. 
- - [ ( 0 . n  -- 0.22) c o s  2 a  -- 0.a s in2  ~b] E [ c 2 B y F l + c l C y F 2 ]  

J,t` 

--(O'11--O'22 ) sin2a COS • ~-'~[c2CyFl-ctByF2] 
J.t` 

(0"u - 0"22) sin 2a sin @ ~ [c 2 Ey F 3 - c t Dy/:4] 
l.t` 

or,, sin 2tp Y', [c2 Dy/:3 + cl Ey F4] 
J,t` 

23 and n.s. 
or m3 

-[(0.11-0.22) cos 2a -0",~ sin 2 ~b] E c4ByF1 

--(0"n- 0"22) sin 2a COs tp ~ c4 Cy'Ft 
l.t` 

(0"11--0"22) sin2a sin O ~ c4EyF3 
J,t` 

0",, sin2~ ~, c4 Dy F 3 
J.t  ̀

Coefficients of  left-hand 
column in (e'z~) expression 

'432 solution' for 
Aj "~ coefficients 

[By ~:, + ~3 c}' p~] 
1.t` 

[cy l : , -  c3 By l:~] 
J,t` 

E [Ey F 3 - c 3 Dy F4] 
.ht` 

~". [ Dy F3 + c3 Ey F4] 

E BYFI 

E cye, 
At` 

Ecru3 
J,t` 

E DyF3 
£t` 

432 and a.s. 

432 and n.s. or 
m3m 

Coefficients of  left-hand 
column in (e'~) expression 

only '432 solution' 
for AT~ 

J,t` 

EE Ey F3-c, Dy F, d 
l,t` 

[ Dy F3 + cs Ey F,] 
J.t̀  

ByF~ 
.~t` 

E cyJ:, 
/ ,~ 

E~yp3 
At` 

Eoyp3 
At, 

(ii) For the 23, m3 and 43m (whatever the scatter- 
ing mode) cases the summations over /z comprise 
both odd and even/z values. As/z steadily increases, 
'pure 23 solutions' and '432 solutions' for the AT ~ 
coefficients occur alternately. Then the left-hand 
expressions of Tables 5 and 6 must be alternately 
multiplied by the second- or third-column 
expressions. For the 432 and m3m (whatever the 

scattering mode) cases only the '432 solution' for the 
Aj "~ can exist. Consequently, only one column per- 
sists. 

(iii) The completed j,/z sums are multiplied by So 
[not shown in Tables 5 and 6 but also a factor of 
g(hkl)]. 

(iv) The four j,./x sums are added and divided by 
the quantity D of Table 4. 
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Table 6. As Table 5 but point group 2,3 m treated 

Left-handed crystal contributions not shown in Tables 5 and 6. In 
both tables the Reuss model of elasticity has been used. Note that 
in Tables 5 and 6 no 'ghost' expressions arise by contrast to those 
given in Table 3, third column, for the intensity expression case. 

Coefficients Coefficients 
of left-hand of left-hand 

column in (e'~z) column in (e'z~) 
'23 solution' '432 solution' 

for A~ ~' for A~ ~' 
coefficients coefficients 

~,3m and a.s. 
-[(cqt - tr22) cos 2a -tr,~ sin 2 ~b] ~ csCt; F2 E B~ F t 

j , ~  j , t ,  

-(cr,, - ~221 sin 2a cos 0 -~-~. Cs B~ F2 ~ C~' F, 
j , ~  J, t ,  

(or,, - o'22) sin 2a sin 0 -~.csO~;F4 ~.E~F3 
j, tz j,,u. 

cr. sin 2~ +~-'. cs E~" F, ~ D~" F3 
J,t-,. J.p- 

43m and n.s. 
-[(oht - ~22) cos 2o~ - o'~ sin 2 0] 0 ~ B~ Ft 

-(oh1 - o'22) sin 2a cos ~ 0 ~ C~ F~ 

(0'tt--O'22 ) sin 2a sin O 0 ~ E ~ F  3 
Jw- 

~r,~ sin 20 0 ~ D~ F3 

The factors c b . . . ,  c5 of Tables 5 and 6 are defined 
as follows: 

c1 = ( - S kL- + 

Z = + S gc+ + S e.c); 

+ S ,e.c- 

= ( - 

C 4 = ( S2HKL - S2K.ISIL)/( S2HKL "[- S2KIY_IL)" 

= ( - ( + 

(31a) 

(31b) 

(31c) 

(31d) 

(31e) 

From these definitions it follows that (i) c2 changes 
into Ca if normal scattering is assumed (Table 1); (ii) 
c~, c3 and c5 are equal to zero for the normal scattering 
case; (iii) upon changing from 23 to 432 (Table 1) c3 
changes into c5. 

All these facts are clearly displayed in Tables 5 and 
6. It also follows from these tables that upon changing 
from anomalous to normal scattering the non- 
centrosymmetric functions (F2 and F4) always vanish. 
Note that the '23 solution' and the '432 solution' 
columns may exhibit the same functions F~, . . . ,  F4 
but they satisfy differentsymmetries (Table 7).* Note 
also that (23, m3 and 43m), since the '23 solution' 
and the '432 solution' for the Aj TM coefficients occur 
alternately in one expression, the total symmetry 
(with respect to cubic crystal axes) is determined by 
the harmonic with the lowest symmetry. For instance, 

* It follows then that the hkl -dependent  part of the diffraction 
strain expression sometimes satisfies a different symmetry from 
that introduced via the crystal's point group. This is analogous to 
the intensity-expression case (Table 3). 

Table 7. Symmetry satisfied by the harmonics K~ and 
Fl,. . . ,  F4 

Definition of symmetry: § 2.2. Definition of K~' harmonics: 
equation (16). Definition of F t . . . . .  F4 harmonics: equations (21) 
to (28). For an entry 'm3m" it is understood that all lower cubic 
symmetries are also satisfied. An entry 'm3' or '432' implies the 
same with respect to 23. The 'pure 23' and '432' solutions for the 
cubic symmetry coefficients A~ "~" are dealt with in § 3. 

'Pure 23' solution for A~ ~' 
m = +2, +6, + 1 0 , . . .  

Harmonic j = even j -  odd 

K~ m3 not 7#3rn 23 and 43m 
F t and F 3 m3 not 713rn m3 not 713m 
F2 and F4 23 and 43m 23 and 2~3m 

'432' solution for A~ "~' 
m = 0 , + 4 , + 8 ( m ~ 0  

for odd j)  
j = even j = odd 

m3m 432 not 713m 
m3m m3m 

432 not 713m 432 not 2~3m 

for 43m + anomalous scattering, the functions F2 and 
F4 satisfy 23 and 43m whereas F~ and F3 satisfy m3m. 

Note further that by contrast with the intensity pole 
figure Phkz the diffraction strain pole figure is not 
normalized. This could be achieved by dividing (e'=) 
by So times a stress-tensor invariant (or by socrl~); cf. 
Fig. 1. However, the normalization then still depends 
on the stress state. 

5. Results and discussion 

From the definition of symmetry of § 2.2, it can be 
shown that the harmonics may exhibit symmetry as 
displayed in Table 7. The definition of the K~ har- 
monics is given by (16) whereas the definition of 
harmonics F~, . . . ,  F4 is given by (23), (24), (27) and 
(28). It follows that 43m symmetry is either satisfied 
by a 'pure 23' harmonic or by an m3m-type harmonic. 
The properties of the K J" harmonics are not con- 
sidered in what follows. 

5.1. Cyclic behaviour and continuity in the poles of the 
sphere 

It can be taken from (21) to (28) that upon replace- 
ment of/3 by/3 +27r the same expression results. It 
is also seen that FI--F2 = Fa = F 4 - 0  for • = 0 and 
• -- zr for all/3. 

5.2. Behaviour with respect to Laplace's equation 

If one writes u -- r/F~ this demonstrates that Lap- 
lace's equation Au = 0 is not satisfied. The same holds 
for harmonics F2 to F4. 

5.3. Orthogonality 

5.3.1. Orthogonality of types of functions. It can be 
shown that 

Fl(O, fl, j,t.t)F*2(O,/3,j',iz')dA=O, (32) 

FI(O,/3,j, tx)F*4(O,/3,j',tz')dA=O, (33) 

F2(O,/3,j, tz)F*(O,/3,j',tx')dA=O, (34) 

F3(O,/3,j,l.t)F*(O,/3,j',tz')dA=O. (35) 
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These results hold in all four cases, even i f j  = j '  and 
/x =/z' .  However, 

Fl(~, /3, j ,  lz)F*a(~, /3, j ' , iz ' )dA~O, (36) 

FE(@,/3,j,l.~)F*4(@,/3,j',tz')dA#O. (37) 

The inequalities (36) and (37) both hold, even i f j  # j '  
or I~#l~'. Obviously, if both functions in the 
integrand exhibit the same symmetry (cf. Table 7) 
orthogonality is lost. 

5.3.2. Orthogonality within one type of function with 
respect to j and Ix. It generally follows from Appen- 
dices II and III* that 

FI(~ , /3 ,L t z )F*(~ , f l ,  j ' , I x ' ) d A ~ O  (38) 

even for j ~ j '  or /z ~/z ' .  The same holds true for 
functions F2 to F4. However, a systematic behaviour 
can be observed (and predicted): if F~ ( O, /3, j, /z ) 
belongs to the 'pure 23' column in Table 7 and 
F~(O,/3,j ' , /x') belongs to the '432' column of Table 
7, equation (38) is on all occasions equal to zero. 
Again, the same holds true for harmonics F2 to F4. 
Note that the value of the index/x (or/z') determines 
whether a harmonic belongs to the 'pure 23' column 
or the '432' column of Table 7. 

A certain amount of the conventional orthogonality 
is retained (Appendices II and III). This is reflected 
by the appearance in the last terms of (II-1) and 
(III-1) of a factor 8jj,8~,,,. ( IL l )  and (III-1) may be 
used for the normalization of harmonics F1 to F4 but 
the use in general terms of j, j ' ,  /z and /z' is very 
cumbersome. 

The integrals of equations (II-1) and (III-1) also 
yield contributions for j '  ~ j  and / z '~ / z .  However, it 
follows from computer calculations (and also from 
the isodensity contours in Figs. 5 to 8) that the evalu- 
ation of the integrals yields a value small compared 
with unity. This is a consequence of the normalization 
of the A~ "~' coefficients using (8) leading to the 
orthonormalization of the KJ ~ harmonics [equation 

* See deposition footnote. 

io~ol 

Doo] 

Fig. 3. Stereographic projection of'normal' symmetrized harmonic 
K2(O,/3) satisfies point group m3 (and 23), not 7~3m (cf. Table 
7). Isodensity symbols used: [~, X 0.00, * +0.20, Z +0.50, x 
-0.20, + -0.50. Only a quarter is shown since the mirror planes 
(point group m3) perpendicular to the plane of the paper gener- 
ate the entire pole figure. 

(7)]. The harmonics F1, . . . ,  F4 are not normalized 
then. However, this condition cannot be changed 
since (8) follows from the normalization of the o.d.f. 
itself (Bunge, 1982, p. 368). 

It is expected that it is possible to reduce the 
expressions (II-1) and (III-1) to a much simpler form 
(still involving j, j ' ,  /z and /z'). A solution of this 
problem has not yet been found. 

5.4. Graphical representation of results 

In Figs. 3 and 4 two 'normal' symmetrized har- 
monics K~" are depicted. Figs. 5 to 8 display an 
example of harmonics/:1, F2, F3 and F4 respectively. 
On all occasions the threefold cubic axes are clearly 
exhibited. 

5.5. 'Desymmetrized' harmonics FI to F4 

These harmonics can be written (in analogy to the 
Kj ~ harmonics) without the cubic symmetrization 
according to (6). Harmonic F1 is then written, for 
instance, 

F1 (q~,/3,j, m) = [A(q~,/3) cos m/3-B(@,/3)  sin m/3] 

x (-1)"/2p] '2(cos @) 

where A(~, /3)  and B(q~, 13) are defined in (21) and 
(22). The sums over m and the cubic symmetry 
coefficients A~ "~' vanish from (II-1) and (III-1) but 
the resulting equations are still complicated. Of 
course, upon conversion to solid spherical harmonics 
the desymmetrized harmonics do not satisfy Laplace's 
equation either. 

5.6. Extension to more general concepts 

The conventional harmonics K~ governing the 
diffracted-intensity (i.e. a scalar quantity) expression 
exhibit associated Legendre polynomials P~(cos ~ )  

Fig. 4. 'Normal' symmetrized harmonic K~(O,/3) satisfies point 
group 23 (and 43m) not m3. Isodensity symbols: according to 
Fig. 3. Plane of the paper is not a mirror plane. Definition of 
K~' in Figs. 3 and 4 according to equation (16). 
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or, more generally, P~°(cos ~). The new harmonics 
F~ to F4 governing the diffraction-strain (i.e. a second- 
rank tensor) expression exhibit generalized associ- 
ated Legendre (Jacobi-type) polynomials Pj~ 1(cos q0) 
and P72(cos qb). It is expected then that harmonics 
exist exhibiting Jacobi polynomials up to, say, 
P~J(cos qb). They may arise in conjunction with phy- 
sical properties whose descriptions need higher-rank 
tensors than required for (diffraction) elastic strain. 

6. Concluding remarks 

Four new types of spherical harmonics have been 
defined. They can be made to satisfy cubic point- 
group symmetry. All cubic point groups have been 
dealt with. The new harmonics originate in the 
equations for diffraction strain pole figures obtained 
on textured materials. They differ essentially from 
those occurring in diffraction intensity pole figures. 

Cubic-symmetry-coefficient equations for point 
group 23 have been given. The coefficients allow the 
calculation of both even- and odd-order symmetrized 
harmonics. The better known cubic symmetry 
coefficients for point group 432 constitute half of the 
solutions obtained. 

General equations have been given which allow 
calculation of the normalization factors of the new 
harmonics. The expressions involve Clebsch-Gordan 
coefficients and the cubic symmetry coefficients 
leading to complicated expressions. 

General diffraction intensity and diffraction strain 
expressions for all cubic point groups, taking into 
account structure factors for both anomalous and 
normal scattering modes, have been given. By contrast 
with the diffraction intensity case, the diffraction 
strain expressions do not exhibit the so-called 'ghosts' 
often encountered in texture analysis from diffraction 
intensity pole figures. 

i 
001 

tmol 

Fig. 5. Symmetrized harmonic F t (~,/3, 9, 1) satisfies point group 
m3 (and 23), not 43m (cf. Table 7). Isodensity symbols used: 
* +0.07, E +0"03, Z +0.10, + -0-07, x -0"03,/~ -0-10, [] 0"00. 
Only a quarter is shown since the mirror planes (point group 
m3) perpendicular to the plane of the paper generate the entire 
pole figure. Definition of F~ according to equation (23). 

I~oo1 

(o~ol 

Fig. 7. Symmetrized harmonic F3(qb,/3, 7, 1) satisfies point group 
m3 (and 23) not 7~3m. Isodensity symbols according to Fig. 5. 
Only a quarter is shown since the mirror planes (point group 
m3) perpendicular to the plane of the paper generate the entire 
pole figure. Definition of F3 according to equation (27). 

° ° 0  

© O 

Fig. 6. Symmetrized harmonic F2(~,/3, 12, 2) satisfies point group 
23 (and 43m) not m3. Isodensity symbols according to Fig. 5. 
Plane of paper is not a mirror plane. Definition of F 2 according 
to equation (24). 

Fig. 8. Symmetrized harmonic F4(~,/3, 6, 2) satisfies point group 
23 (and 43m) not m3. Isodensity symbols according to Fig. 5. 
Plane of paper is not a mirror plane. Definition of F4 according 
to equation (28). 
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S t imula t ing  discusss ions  wi th  Dr  Ir  R. De lhez  and  
Professor  Dr  Ir  E. J. Mi t t eme i j e r  are gra tefu l ly  
a cknowledged .  
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Abstract 

A recent paper by Camalli, Giacovazzo & Spagna [Acta 
Cryst. (1985). A41, 605-613] describes a method which is 
almost identical to the D I R D I F  method for the application 
of direct methods to difference structure factors. The 
similarities and differences, incorrectly described in that 
paper, are discussed in the present paper. 

Introduction 

The application of direct methods to the solution of a 
heavy-atom superstructure problem (Beurskens & Noordik, 
1971) led to the Concept of the D I R D I F  method, which 

0108-7673/87/020283-02501.50 

has been extensively developed over fifteen years of prac- 
tical experience [see Beurskens (1985) and references 
therein]. It has been intuitively assumed that direct methods 
are applicable to a hypothetical structure consisting of the 
complete structure minus the known part of the structure. 
The program D I R D I F  can expand a partial structure to 
the complete structure, if the partial structure comprises as 
little as ten percent of the total scattering power of the 
structure. Camalli, Giacovazzo & Spagna (1985) have now 
described a very similar method, justified in terms of the 
proba~ilistic formulae of Giacovazzo (1983). Unfortu- 
nately, they make several important errors in the com- 
parison of their method with DIRDIF, a comparison which 
is made more difficult by differences in terminology. 
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